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Second-Order, Local-Bound-Preserving, 

Remapping for ALE Methods 

Milan Kuchafilc Mikhail Shashkov Burton Wendroff 

Abstract 

In this paper we describe an efficient, second-order accurate, local-bound-preserving 

remapping (conservative interpolation) algorithm for Arbitrary Lagrangian-Eulerian 

(ALE) methods. The algorithm is bascd on reconstruction, approximate integration 

and mass redistribution. 

Key words: ALE Methods; Conservative Interpolation; Remapping 

1 Introduction 

Consider that  we have a mesh that is a tessellation of some region SI by a 

collection of cells Ci i = 1, ..., L,  that is, the cells have disjoint connected 

interiors and their union is $2. This we will call the old mesh. 

Next, suppose there is a new tessellation of the region with a different collection 
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of cells ci i = 1, ..., L,  such that each new cell 6i is obtained by a small 

displacement of the vertices of the old cell Ci. 

In the context of ALE methods the old mesh would be the result of the La- 

grangian step and the new mesh would be the result of mesh modification 

(rezoning). 

The situation is that the only data that the computation has at hand are, for 

each cell Ci, the mass for some density function p(x) ,  said mass being 

with corresponding mean value 

where V(Ci) is the volume of Ci. 

The conservative interpolation (remapping) problem is to  compute the masses 

fiii and mean values of the new grid, but since the density distribution is 

unknown we can only approximate them. We will denote these approximate 

values by 61:. This approximation has to be exact for a global linear function 

and total mass should be conserved. 

A possible procedure for accomplishing this has two stages. First, one con- 

structs a new distribution P(x) such that Jci P(x) dV = mi and, if p(x) )  is a 

global linear function then P(x) = p(x)  - the reconstruction step. In this paper 
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we use the Barth-Jaspersen limiting procedure to construct a piece-wise linear 

function $(x) (see, for example, [l]). It guaranties that  the value of ;(x) at 

cell ei is within local bounds as defined by the maximum and minimum of 

mean values in cell Ci and its nearest neighbors. 

For the second stage ;(x) is emctly integrated over the new cells. This requires 

finding the intersection of each new cell with the old ones. It is doable but 

computationally very expensive in two dimensions, but not feasible in three 

dimensions. We will call such a method "exact" and use it as the reference 

method. 

In this paper we present a new efficient, conservative, local-bound-preserving, 

second-order accurate algorithm which does not require finding intersections. 

The first stage of our new method is the same as for the exact method. 

In the second stage, the new mass is written in flux form (which guaranties 

conservation of total mass), that is, the mass of each new cell will be set to 

the mass of the corresponding old cell plus fluxes which define the exchange of 

mass with nearest neighbors, These fluxes are computed by using a quadrature, 

which does not require finding the intersections. 

It may happen (because of approximate integration) that the new means will 

be out of local bounds, for example, they can be negative even if the old means 

were all positive. 
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Fig. 1. Old (thin lines and solid circles) and New mesh (bold lines and solid squares); 

Swept regions. 

To fix out of bound means we introduce a third stage, wherein masses of new 

cells are redistributed.in such a way that modified new means are in the range 

of local bounds. 

In the following sections we will describe the algorithm and give some numer- 

ical examples. 

2 Remapping Algorithm 

The method we are describing is by no means restricted to a logically rectan- 

gular grid or to 2D, but we explain it in those terms. 

The vertices of a logically rectangular grid are Pi,j = (xi,j, yi,j), i = 1, - . , m, 

j = l , . . . , n  . The cells Ci+rf+; are the quadrilaterals formed by the four 

vertices Pi,j, Pi+l,j, Pi+l,j+l, Pi,j+l (see Fig. 1). 

2 

4 



2.1 Approximate  Integration 

The approximate new mass f i~;++,~+$ is defined in terms of the old mass 

mi++&.+, and mass exchange with neighboring cells, 

Here F are edge fluxes, which are defined following ideas from [l] and will be 

described next. 

Consider an edge Fi,j-++ = {Pi,j, Pi,j+l}. This edge is common to cells Ci+g,j++ 

and Ci+f,j++. Rezoning moves Pi,j to its new position l?i,j and Pi,j+l to &+I, 

thereby forming a quadrilateral 6Fi,j++ = (Pi,j, l?i,j, pi,j+~, Pi,j+1) (see Fig. 1), 

which we will call the swept region. 

The critical function of the swept region is its s igned  area V(6Fi,,.+i), which 

sign depends on the ordering of its vertices. It is introduced by expressing the 

area in terms of a line integral as follows: 

For situation shown jn Fig. 1, V(Sl”,,j++) < 0. 

We can introduce signed (see, [l]) integration of any polynomial function over 

a polygon by reducing it to a line integral similar to (2). In the rest of the 

paper we will understand all integrals in this sense. 
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We define the flux Fi,j+I/p in (1) as follows 

where 

In words, in the swept region the integrand is taken entirely from the cell on 

one side or the other of the edge, depending on the sign of the swept area. For 

example, in the case shown in Fig. 1 V(6Fi,j+;) < 0 and we use the recon- 

structed linear function belonging to the left side of the edge (&-;,j+~(x,g)) 

because most of the swept region lies inside cell Ci-l,j+;. 

2 

2 

2.2 Conservative Mass Re-Distribution 

The quantity which one is remapping may have specific physical meaning. 

For example, the given means might be derived from a concentration lying 

between zero and one, and for the remapped means to be physically correct 

they have to be in the same range. At this point our algorithm may create 

values out of range, especially for non-smooth p. Here we describe a procedure 

based on mass redistribution which locally adjusts the out of range values to 

be within the bounds. 
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By way of illustration, suppose all the initial means are nonnegative and that 

we would like the same to be true of the remapped means. Now, suppose 

that the mass of some new cell 6i++,j++, computed using (l), is negative. Let 

m- = ff-q+;,j+; < 0. We look at the eight immediate neighbors of the cell 

and compute the total mass M of those neighbors having positive masses. If 

Ad 2 Im-1, we can rcduce each of those positive masses m+ by m+ Irn-[/M, 

and then set = 0, thereby conserving mass. If M < 1m-I then we 

cannot correct the negative mass from the eight neighbors. In this case one can 

try larger neighborhoods. Eventually by extending neighborhoods we will be 

able to  correct negative value because total mass is conserved and is positive. 

However, in all examples which we have run it was enough to use only nearest 

neighbors. 

A similar procedure can be done for any global or local bound. For example, 

we could take as upper and lower bounds the maximum and minimum of 

neighboring old cell values. In fact, in the numerical examples presented in 

the next section such local bounds were imposed. 

3 Tests 

In this section we compare our new method and the exact method. 

Here we assume that we have a sequence of grids {xtj, n = 0, . . . nmaz}, the 

superscript identifying a particular grid. We begin with a given test function 
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p(x ,y )  and compute its means on grid x:,~,  then remap the function means 

from grid x:,~ to grid z&, and then remap resulting means from grid x: ,~  to grid 

x: ,~,  etc. This allows us to look at the cumulative effect of many remappings. 

In our experiments we will use a sequence of 100 random grids, where each 

grid is obtained by random perturbation of the uniform grid in unit square 

(see PI). 

We will use smooth Sine test function p(x,  y) = 1 + sin(2 nz) sin(2 n y), and 

discontinuous Square test function, the later being equal to one in a small 

square centered in (0.5,O.S) with side equal to 0.173 and zero in the rest of 

the domain. 

3.1 Numerical Experiments 

First, we remap the sine test function. The results of the computations demon- 

strate second-order convergence in the discrete L1 and max norms for both 

methods. The errors for both methods are very close. 

Second, we remap the square test function. Here we use the 502 grid. The L1 

norms of the errors are 3.07-2 and 2.95-2 for exact and new method respec- 

tively. The max norm errors are 6.64-1 and 6.60-I. Final isolines are presented 

in Fig. 2. Visually the isolines are almost indistinguishable. 
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Fig. 2. Isolines for remapping of square Lest function: a) Exact method, b) New 

method. 
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